Entradas

A primera vista puede parecernos extraño que un microorganismo nos ayude a tener plantas fuertes y sanas, sin embargo existen miles de microorganismos a nuestro alrededor y algunos de los que viven en el suelo tienen la habilidad de promover el crecimiento de las plantas porque proporcionan nutrientes como nitrógeno, fósforo y hierro.
El proceso por el que los microbios pueden asimilar el nitrógeno gaseoso de la atmósfera se llama Fijación biológica de nitrógeno y es una versión natural de la producción industrial de fertilizantes. Los microbios que realizan este proceso se pueden ver como pequeñas fábricas de fertilizantes nitrogenados. Algunas de estas bacterias fijadoras de nitrógeno viven en estrecha relación con las plantas y pueden proporcionarles nitrógeno haciendo que estas dependan menos del nitrógeno del suelo o de los fertilizantes químicos con nitrógeno. Las bacterias más conocidas que tienen esta capacidad se asocian a plantas leguminosas y se llaman “rizobios”.

El fósforo es un nutriente que puede ser abundante en el suelo pero que no es fácilmente disponible para las plantas porque se encuentra en formas insolubles que no se pueden utilizar. Existen microorganismos llamados “solubilizadores de fosfatos” que tienen la habilidad de producir sustancias ácidas que liberan el fósforo de los minerales del suelo y así este nutriente ya puede ser absorbido por las plantas. Los microorganismos más conocidos que tienen esta capacidad son hongos llamados “micorrizas” pero también hay bacterias que viven asociadas a las plantas que pueden solubilizar fosfatos.
El hierro es otro nutriente que también suele encontrarse en formas insolubles y no disponibles para los vegetales en el suelo. Algunos microorganismos producen y liberan unas sustancias llamadas “sideróforos” que unen muy fuertemente al hierro, luego estos complejos sideróforo – hierro son absorbidos por las raíces de las plantas.
Otra forma en la que los microorganismos pueden favorecer el crecimiento de las plantas es mediante la producción de hormonas vegetales, como las auxinas. Estas sustancias promueven el crecimiento de las raíces de las plantas, lo que permite que puedan absorber más agua y nutrientes del suelo.

Cuando las plantas sufren algún tipo de estrés liberan una hormona llamada etileno, hay algunos microorganismos que producen sustancias capaces de disminuir la producción de etileno en las plantas, lo que disminuye el estrés y por lo tanto mejora el crecimiento. Este es otro mecanismo mediante el cual las bacterias promueven el crecimiento vegetal.
Extraído del Manual Teórico – práctico: Los Biofertilizantes y su uso en la Agricultura. SAGARPA – COFUPRO – UNAM. México, D.F. 2013.

Después de que terminara la Segunda guerra mundial (finales de 1945) se buscó una manera de producir alimentos en suficiente cantidad para la población mundial. En 1940, surge en Estados Unidos un modelo de producción, llamado Revolución Verde. Era un modelo de agricultura intensiva que tenía la finalidad de aumentar rendimientos de los cultivos, en el que se siembran monocultivos y se usan insumos agrícolas como los fertilizantes químicos, plaguicidas y herbicidas. Ahora se sabe que los agroquímicos tienen efectos nocivos tanto para la salud de las personas como para el ambiente.
Es verdad que los fertilizantes químicos y en general, los insumos agrícolas, aumentan la productividad agrícola en los primeros años que se usan, sin embargo, se sabe que la productividad no se sostiene por mucho tiempo.
El uso de fertilizantes nitrogenados en el mundo aumenta año tras año y su precio también se incrementa, esto debido a que el petróleo es fundamental para su elaboración, tanto como materia prima como la energía derivada de este. Hace 30 años México producía los fertilizantes químicos que usaba, sin embargo ahora se importan más de la mitad. Considerando que las reservas de petróleo se están agotando y que su precio se elevará cada año, y que la demanda de los fertilizantes aumenta cada año, se espera que también el precio de los fertilizantes aumente en un mediano y largo plazo.
El nitrógeno en el suelo tiene un índice de asimilación muy bajo por los cultivos. Del total de nitrógeno que se incorpora al suelo, dependiendo del manejo y del tipo de fertilizante aplicado, más del 50% (hasta el 80%) es perdido del suelo por la lixiviación (lavado por el agua hacia el subsuelo). Se lavan el nitrato orgánico o formas de nitrógeno orgánico que se pueden disolver en agua. El nitrógeno se pierde también por la volatilización de los gases que se producen en el suelo, amonio, óxido nítrico y óxido nitroso.

Parte del nitrógeno no utilizado termina en ríos, lagos y mares causando la eutrofización de los mantos de agua, lo que significa que aumentan las concentraciones de nutrientes. La eutrofización provoca que algunos tipos de organismos crezcan de más, como algunas algasa que crecen tanto que no dejan pasar la luz a través del agua, lo que limita la producción en estuarios (sitio donde se une un río con el mar) y costas, el resultado es que hay poca o nula producción pesquera. En sistemas terrestres, los pastos invadirán la tierra pues no hay limitante de nutrientes como el nitrógeno.
El consumo de agua con cantidades altas de nitratos tiene efectos en la salud de las personas. Los niños menores de 6 meses de edad desarrollan una enfermedad (metahemoglobinemia) que ocasiona que no puedan respirar y se vean de color azul. Algunos datos científicos han asociado el consumo de nitratos al desarrollo de algunos tipos de cáncer en humanos.
Los productos transformados de los fertilizantes nitrogenados que se liberan como gases, tienen efectos negativos en el ambiente. En el caso del óxido nítrico los efectos son locales, provocando por ejemplo, lluvias ácidas. Los efectos del óxido nitroso son globales, pues este es un gas de invernadero que causa un aumento de la temperatura global en el planeta y contribuye al cambio climático. Este gas también es responsable de romper el ozono que nos protege de los rayos ultravioleta.

Los fosfatos de los fertilizantes químicos también son responsables de la contaminación ambiental y se han asociado a la proliferación de unas bacterias muy antiguas en el planeta tierra, las cianobacterias, que pueden producir toxinas de alto riesgo para la salud. El consumo de estas toxinas en el agua se ha asociado a enfermedades nerviosas de gravedad semejantes al Alzheimer.
Dentro de los recursos con los que se cuenta actualmente para disminuir el uso de los fertilizantes químicos se encuentran compostas y biofertilizantes fijadores de nitrógeno como el Azospirillum brasilense y el Rhizobium étli así como hongos Micorrizicos o Micorrizas que ayudan a la solubilización de nutrientes como fósforo y potasio, asímismo existen productos orgánicos para el tratamiento de plagas de insectos y enfermedades al igual que prácticas de agricultura orgánica.
Extraído del Manual Teórico – práctico: Los Biofertilizantes y su uso en la Agricultura. SAGARPA – COFUPRO – UNAM. México, D.F. 2013.

Para que se forme un suelo fértil es necesario que pasen millones de años. Sin embargo, puede perderse en poco tiempo, si no existe vegetación o materia orgánica que lo cubre éste será arrastrado por el agua y el viento.
El suelo se forma por la acción de diferentes fuerzas (químicas, físicas y biológicas) sobre la materia que le da origen, que es la roca basal. El suelo es un sistema dinámico que se encuentra en continua transformación. Hay que destacar que son los microorganismos como hongos , entre ellos la Micorriza, y bacterias quienes ayudan en la formación del suelo, degradando las rocas y produciendo gomas que le dan estructura. Posteriormente, otros organismos como los líquenes y musgos colonizan la roca facilitando en el proceso la formación del suelo. Más adelante, otros organismos como lombrices, plantas arbustivas y árboles lo colonizarán y el suelo seguirá formándose.
Existe una diversidad de pequeños sitios que son muy variables uno de otro en la composición del suelo. Se ha dicho que un centímetro de suelo es diferente al centímetro aledaño y que un gramo de suelo puede contener miles o millones de especies de microbios. Existe una gran diversidad de suelos, éstos son diferentes en su textura, porcentaje de materia orgánica, capacidad de retención de humedad, minerales, tamaño de las partículas que lo forman, entre otras características.

La composición del suelo se divide en tres fases: acuosa (agua), gaseosa (aire) y sólida. La parte sólida está formada por dos tipos de compuestos, la materia orgánica y los compuestos inorgánicos. De manera general, un suelo agrícola tendrá entre 15 – 35% de agua, de 1 – 5% de materia orgánica (un suelo muy fértil), un 45% aproximadamente de minerales y el resto será aire.
La parte inorgánica, en forma de arcillas, contiene minerales que aportan nutrientes a las planta, en ellas se encuentran compuestos capaces de interactuar con el agua en el suelo.
Los dos elementos más abundantes en el suelo son oxígeno (aproximadamente 45%) y silicio (aproximadamente 27%) el resto corresponde a más de 90 elementos como aluminio, hierro, calcio, sodio, potasio y magnesio. Las plantas dependen de los minerales del suelo para vivir y son tomados a través del agua, pues algunos son capaces de disolverse en esta y así son transportados al interior de las plantas.
Otros minerales se encuentran en forma no soluble en la materia orgánica y en la parte inorgánica del suelo y para ser tomados por las plantas requieren ser solubilizados mediante un proceso de “intercambio catiónico” en formas solubles. En el suelo hay proceso físicos y químicos que permiten la solubilización de los minerales, pero también existen procesos biológicos como aquellos llevados por los biofertilizantes, los cuales contienen bacterias fijadoras de nitrógeno como el Rhizobium Etli o el Azospirillum Brasilense y por hongos como la Micorriza, estos aportan a las plantas de manera natural los nutrientes que no pueden solubilizar por su cuenta.
Es muy importante conservar el suelo para mantener la productividad, pues cuando la capa superior se pierde hay menor retención de agua y las raíces ya no tienen soporte, se pierde la materia orgánica, el nitrógeno, el fósforo y otros elementos y nutrientes. El suelo se endurece y las raíces no pueden entrar más profundamente, lo que les impide tomar más recursos.
Para evitar que el suelo se elimine, se debe mantener vegetación en él, usando árboles o cultivos perennes, con rotación de cultivos o bien, dejando residuos de la cosecha anterior, el objetivo es que siempre haya una cobertura vegetal en el suelo agrícola.
El uso de composta en conjunto con los biofertilizantes ayudan a que el suelo se pueda regenerar paulatinamente aportándole la materia orgánica necesaria para su productividad.
La rotación de cultivos, además de conservar el suelo tiene otras ventajas, permite un manejo integral de plagas, pues se rompen los ciclos de vida de los patógenos y plagas que afectan los cultivos.
Extraído del Manual Teórico – práctico: Los Biofertilizantes y su uso en la Agricultura. SAGARPA – COFUPRO – UNAM. México, D.F. 2013.

El pasado 6 de noviembre la Organización Meteorológica Mundial (OMM) presentó nuevamente informes sobre la situación actual de los gases de efecto invernadero en el planeta. Una situación que es ya realmente alarmante. Si bien la OMM advirtió que los cambios en la atmósfera tendrán un alto impacto a futuro, solo basta ver los estragos en nuestro país causado por las tormentas tropicales y huracanes o los más recientes desastres en Filipinas causados por el tifón Haiyan, para darnos cuenta de lo grave de la situación.
Y es que todos los problemas ambientales que estamos atestiguando actualmente son en gran medida por la alta emisión de gases que están en la atmosfera y que, peor aún, han sido absorbidos por la biosfera y los océanos. La concentración de gases provoca un fenómeno llamado forzamiento radioactivo que en este caso genera el aumento de la temperatura por radiación solar y que ha aumentado en un 32% entre 1990 y 2012.
Dentro de los gases que se emiten está el caso ya muy conocido del bióxido de carbono que proviene principalmente de la quema de combustibles fósiles y que se ha venido incrementando, provocando el aumento de la concentración de gases en un 80%; por otra parte está el gas metano que proviene en un 60% de actividades como la ganadería, el cultivo de arroz, combustibles fósiles y la combustión de biomasa. Otro gas que es altamente alarmante es el óxido nitroso que según la OMM ha aumentado su concentración enormemente pues en 2012, su concentración fue un 120% superior al nivel de la era preindustrial.
Es sumamente preocupante que la falta de acuerdos entre gobiernos y la persistencia de empresas por el lucro a costa de los bienes naturales siga imperando en estos tiempos. Afortunadamente son cada vez más las personas que toman conciencia sobre lo grave de la situación y han comenzado a actuar, es importante recalcar que instituciones académicas y científicas han aportado remedios y soluciones a la situación mundial.
El caso de la agricultura es clave para entender en gran medida la emisión de gases de efecto invernadero, sobre todo de óxido nitroso y bióxido de carbono. Al respecto existe la alternativa al uso de fertilizantes químicos como los biofertilizantes, asimismo existen biofungicidas y bioplagicidas y todos pueden ser usados de manera industrial sin mayor problema.
Tomemos conciencia hoy y sigamos trabajando por construir un mejor futuro para nosotros y para los que no están aún aquí.
Si desea consultar la nota de BBC noticias acceda a: https://www.bbc.co.uk/mundo/ultimas_noticias/2013/11/131106_ultnot_cambio_climatico_emisiones_am.shtml

Puede sorprender en primera instancia el hecho de que este 1 de octubre se haya recategorizado al “Parque Nacional” del Nevado de Toluca en el Estado de México como “Área de protección de flora y fauna” . ¿Pero que implica esto?
En primera instancia se plantea una reorganización del territorio que comprendía el Parque Nacional Nevado de Toluca, con la intención de aprovechar de manera sustentable los recursos que tiene para ofrecer, básicamente se dará paso a la intervención de las comunidades y centros de investigación para que puedan realizar tanto actividades de agricultura y ganadería así como turismo e investigación.
El Nevado fue declarado como Parque Nacional por el presidente Lázaro Cárdenas y decretado como tal en el Diario Oficial de la Federación el día 25 de enero de 1936, se buscaba hacer de dicha zona un lugar no solo para la conservación de especies de fauna y flora sino hacer participes a las comunidades de la explotación racional de los recursos forestales aun no estando contempladas dentro del perímetro oficial del Parque.
En la nueva propuesta del presidente Enrique Peña, se harán participes a las comunidades colindantes de la zona para que puedan aprovechar los recursos de manera sustentable, una vez que se prioricen las zonas para explotación racional de recursos. Las comunidades podrán desarrollar actividades de turismo ecológico, educación ambiental e investigación, todo esto sin dañar o alterar la fauna y flora del lugar. Se destaca el hecho de que no se podrán establecer inmuebles que urbanicen la zona, ni se podrán realizar actividades extractivas que contaminen o alteren el equilibrio del lugar.
¿Qué es lo preocupante? Dentro del artículo décimo fracción 5 y el artículo décimo segundo se hace referencia a la forma de explotación de flora y fauna. Lo preocupante es que de incurrir en corrupción y si hay intereses de empresas o compañías transnacionales (o nacionales) de por medio, se vaya por encima de la ley, lo que daría como resultado el inicio de la explotación irracional de la zona. Debemos recordar que casos como estos han sido ya muchos en diversas zonas del país, las autoridades deben de estar conscientes de los daños que acarrearían acciones de extracción a niveles industriales, daños que serían irreversibles.
«Art. 10 fracc. 5. El aprovechamiento extractivo de vida silvestre requiere para su autorización la opinión previa de la Comisión Nacional de Áreas Naturales Protegidas, excepto cuando dicho aprovechamiento se realice con fines de subsistencia” .
“Art. 12. Cualquier obra o actividad pública o privada que se pretenda realizar dentro del área de protección de flora y fauna «Nevado de Toluca», deberá sujetarse a los lineamientos y modalidades establecidos en este Decreto, el programa de manejo del área y a las demás disposiciones jurídicas aplicables. Asimismo, quienes pretendan realizar dichas obras o actividades deberán contar, en su caso y previamente a su ejecución, con la autorización de impacto ambiental correspondiente…”.
Debemos recordar que un manejo sustentable de cualquier zona natural es esencial para nuestra sobrevivencia.
El manejo racional orgánico y biológico de la agricultura será clave para un verdadero desarrollo sustentable, elementos como los biofertilizantes deberán empezar a ser difundidos para poder aprovechar de manera amigable y no contaminante lo que la tierra nos provee.
Para consultar la publicación en el Diario Oficial de la Federación acceda a:
https://www.dof.gob.mx/nota_detalle.php?codigo=5315889&fecha=01/10/2013

El día 5 de octubre se realizaron dos visitas a parcelas demostrativas ubicadas en el Estado de Morelos. El objetivo de las visitas fue observar los resultados obtenidos en plantaciones de cacahuate con el uso de nuestros productos Micorrizafer y Rhizofer en comparación con el tratamiento testigo de abono de corral mas fungicidas químicos.

En las primeras parcelas visitadas, ubicadas en Ahuehuetzingo, Morelos, los productores sembraron cuatro parcelas utilizando 1 combo de Micorrizafer + Rhizofer y un fungicida químico. De las cuatro parcelas sembradas tres fueron inoculadas al pie de la planta a las 2 semanas del brote y la parcela restante fue fertilizada a través de la inoculación de las semillas, obteniendo un brote a los 6 días. La aplicación de nuestros productos fue totalmente nueva para los productores, nunca antes habían llevado a cabo el proceso de biofertilización.

En las segundas parcelas visitadas en Morelos, se compararon plantaciones de cacahuate con tratamiento testigo y aquellas fertilizadas con 2 combos de Micorrizafer + Rhizofer.

La diferencias fueron importantes pues en las plantaciones que habían sido biofertilizadas con nuestros productos se encontraron plantas con abundante follaje, tallos gruesos y mas cacahuates, mientras que en las que habían sido fertilizadas con tratamiento testigo de abono de corral y fungicidas, se apreciaron plantas con follaje reducido, tallos delgados y pocos cacahuates.

Resultados.

Los resultados que los productores pudieron observar consistieron en el incremento en cuanto a follaje de la planta, grosor de tallos, mayor formación de nódulos en la raíz y un mayor numero de cacahuates obtenidos.

Cabe destacar que las parcelas fertilizadas con Micorrizafer y Rhizofer obtuvieron un resultado en rendimiento promedio de 2,5 toneladas por hectárea en comparación al testigo con abono de corral que genero una sola tonelada por hectárea.

Además del rendimiento superior que se obtuvieron en las plantas biofertilizadas con Micorrizafer y Rhizofer su aspecto era notablemente mejor que aquellas que no habían sido biofertilizadas. Pues las plantas biofertilizadas con Micorrizafer y Rhizofer presentaban una mejor coloración, mejores tallos, follaje y raíces mas grandes y gruesas con una mayor cantidad de nódulos y mas cacahuates.

Por César González y Juan Carlos Peña*

El suelo es el sustrato sobre el que se sostienen todos los ecosistemas terrestres y el principal sostén productivo que mantiene la provisión de alimentos a las poblaciones humanas. Su calidad depende de sus propiedades fisicoquímicas y de la actividad y diversidad de su biota. El suelo y su biota interactúan en la interfase raíz-suelo, en la zona conocida como rizósfera, que es un microcosmos dinámico con un ambiente químico y biológico claramente distinto al resto del suelo, (Lynch 1990; Azcón-Aguilar y Barea 1992; Kennedy y Smith 1995; Bowen y Rovira 1999).

El suelo posee una infinidad de características, no obstante, algunas son más importantes para el desarrollo de los seres vivos: 1) La porosidad, la cual permite el paso de aire y agua en el interior del suelo, elementos esenciales para el desarrollo de los microorganismos y las plantas. 2) Su estructura, que depende del arreglo o configuración de sus partículas, compuestas por diferentes cantidades de arena, limo y arcilla, unidas entre sí, formando lo que se conoce como agregados. La importancia de los agregados radica en que determinan el grado de porosidad del suelo, necesaria para la infiltración de agua y para la aeración de las raíces (Wright y Upadhyaya 1998).

3) La disponibilidad de nutrientes, necesaria para el crecimiento vegetal, 4) El contenido de materia orgánica, que mejora la fertilidad, y 5) La actividad microbiana, que intervienen en distintos procesos vitales para el ecosistema como el ciclaje de nutrientes, la fertilidad del suelo, su estructura y el crecimiento vegetal.

Que el suelo se encuentre en buenas condiciones es uno de los condicionantes principales para la productividad agrícola. No obstante, sus prácticas provocan el deterioro del  suelo a través del establecimiento de monocultivos que disminuyen la fertilidad, del arado que destruye las partículas del suelo, de la falta de una cubierta vegetal permanente, que favorece su erosión, del uso de pesticidas y agroquímicos, que provocan la salinización, la contaminación del suelo y del agua,  además del uso de otros químicos nocivos que afectan a las poblaciones microbianas y a la producción de alimentos.

En condiciones naturales, el suelo cuenta con una comunidad de microorganismos, que junto con las plantas y otros organismos (como insectos, arácnidos, anélidos, entre otros) mantienen al suelo con un adecuado balance para el desarrollo del ecosistema. En este sentido existen algunos grupos de microorganismos con una alta capacidad como restauradores del suelo. Entre estos microorganismos unos de los más importantes son los hongos formadores de micorriza, también llamados hongos micorrízicos.

Los hongos micorrízicos intervienen en la conservación del suelo mediante distintos mecanismos. Al mejorar la absorción de nutrimentos de las plantas aumentan la productividad vegetal, lo que permite que exista una mayor cantidad de materia orgánica, que cuando se descompone se integra en el suelo, mejorando entre otras propiedades la fertilidad, la capacidad de intercambio catiónico y la capacidad de retención de agua. Consecuentemente, los hongos micorrízicos, cambian la composición de los exudados de la raíz, que sirven de alimento para otros microorganismos rizosféricos esenciales para el crecimiento vegetal y para el ciclaje de nutrientes.

Los organismos benéficos son conocidos por desempeñar papeles fundamentales en el suelo (Barea 1997), particularmente el grupo de las bacterias entre los que destacan las rizobacterias y las bacterias fijadoras de nitrógeno, conocidas por su habilidad para colonizar a la raíz y promover el crecimiento vegetal. Este grupo de organismos desempeñan muchos papeles importantes, tales como el control biológico de patógenos, el ciclaje de nutrientes, el establecimiento de las plántulas y la mejora en la calidad del suelo (Weller y Thomashow 1994; Barea et al. 1998; Barea 2000; Barea et al. 2002).

Las bacterias fijadoras de nitrógeno y las solubilizadoras de fósforo mejoran la disponibilidad de dos de los nutrientes principales para las plantas el Nitrógeno (N) y el Fósforo (P). Las relaciones sinérgicas entre estos microorganismos y los hongos micorrízicos han sido ampliamente demostradas. La inoculación con hongos micorrízicos mejora la nodulación en leguminosas y la fijación de nitrógeno (Barea et al. 1992). La bacteria del género Azospirillum influye sobre la morfología, geometría fisiología del sistema radical, además de promover el crecimiento de la planta y la fijación de nitrógeno.

Ha sido demostrado también, que Azospirillum puede aumentar la formación de la simbiosis micorrízica y su respuesta, mientras que los hongos micorrízicos puede mejorar el establecimiento de Azospirillum en el suelo (Volpin y Kapulnik 1994). Por lo tanto el manejo de dichas interacciones provee un enfoque prometedor para el desarrollo de tecnologías para la producción agrícola (Bethlenfalvay y Linderman 1992; Gianinazzi y Schüepp 1994; Jeffries y Barea 2001) y para la restauración de suelos degradados, ya que además de promover el crecimiento vegetal, intervienen en el ciclaje de nutrientes,  de vital importancia para el mantenimiento de la fertilidad del suelo.

Actualmente, Biofábrica Siglo XXI, cuenta con una línea de biofertilizantes elaborados con base en bacterias como el Azospirillum brasilense, Azofer, Rhizobium etli, Rhizofer y hongos como los de Micorriza del género Glomus, Micorrizafer, los cuales han sido probados y avalados por su efectividad, beneficiando tanto la productividad en la agrícultura como a la regeneración de los suelos en México.

* Maestros en Ciencias e investigadores de Biofábrica Siglo XXI.